Biblio









  • BIBLIOGRAFÍA HIPERTENSIÓN PULMONAR





    Full Access
    ,
    American Journal of Respiratory and Critical Care Medicine, 2013, Vol.187: 303-310, 10.1164/rccm.201207-1290OC
    Abstract | Full Text | PDF (158 KB) | Supplemental Material

    Full Access

    American Journal of Respiratory and Critical Care Medicine, 2012, Vol.186: 181-189, 10.1164/rccm.201110-1860OC
    Abstract | Full Text | PDF (963 KB) | Supplemental Material

    Full Access
    ,
    American Journal of Respiratory and Critical Care Medicine, 2011, Vol.184: 1171-1182, 10.1164/rccm.201103-0412OC
    Abstract | Full Text | PDF (1655 KB) | Supplemental Material

    Full Access
    ,
    American Journal of Respiratory and Critical Care Medicine, 2005, Vol.172: 1586-1589, 10.1164/rccm.200505-766OC
    Abstract | Full Text | PDF (110 KB)

    Full Access

    American Journal of Respiratory and Critical Care Medicine, 2010, Vol.181: 1269-1275, 10.1164/rccm.200912-1856OC
    Abstract | Full Text | PDF (801 KB)

    Full Access
    ,
    American Journal of Respiratory and Critical Care Medicine, 2006, Vol.174: 1257-1263, 10.1164/rccm.200603-358OC
    Abstract | Full Text | PDF (521 KB)

    Full Access
    ,
    American Journal of Respiratory and Critical Care Medicine, 2006, Vol.174: 1034-1041, 10.1164/rccm.200604-547OC
    Abstract | Full Text | PDF (195 KB) | Supplemental Material

    Full Access
    ,,
    American Journal of Respiratory and Critical Care Medicine, 2008, Vol.177: 1128-1134, 10.1164/rccm.200707-1015OC
    Abstract | Full Text | PDF (592 KB) | Supplemental Material

    Full Access

    American Journal of Respiratory and Critical Care Medicine, 2008, Vol.178: 558-564, 10.1164/rccm.200709-1369PP
    Abstract | Full Text | PDF (1751 KB)

    Full Access
    ,
    American Journal of Respiratory and Critical Care Medicine, 2009, Vol.180: 881-886, 10.1164/rccm.200904-0563OC
    Abstract | Full Text | PDF (250 KB) | Supplemental Material

    Full Access
    ,
    American Journal of Respiratory and Critical Care Medicine, 2009, Vol.180: 468-474, 10.1164/rccm.200810-1603OC
    Abstract | Full Text | PDF (296 KB) | Supplemental Material

    No Access

    American Journal of Respiratory Cell and Molecular Biology, 2013, Vol.49: 1135-1145, 10.1165/rcmb.2012-0470OC
    Abstract | Full Text | PDF (1836 KB) | Supplemental Material

    No Access

    American Journal of Respiratory Cell and Molecular Biology, 2013, Vol.49: 403-409, 10.1165/rcmb.2013-0100OC
    Abstract | Full Text | PDF (844 KB) | Supplemental Material

    No Access

    American Journal of Respiratory Cell and Molecular Biology, 2014, Vol.50: 74-86, 10.1165/rcmb.2012-0506OC
    Abstract | Full Text | PDF (1936 KB) | Supplemental Material

    No Access

    American Journal of Respiratory Cell and Molecular Biology, 2014, Vol.50: 647-653, 10.1165/rcmb.2013-0135OC
    Abstract | Full Text | PDF (1249 KB) | Supplemental Material

    No Access

    American Journal of Respiratory Cell and Molecular Biology, 2014, Vol.51: 155-162, 10.1165/rcmb.2013-0063OC
    Abstract | Full Text | PDF (1121 KB) | Supplemental Material

    Full Access

    American Journal of Respiratory Cell and Molecular Biology, 2005, Vol.33: 438-446, 10.1165/rcmb.2005-0103OC
    Abstract | Full Text | PDF (966 KB)

    Full Access

    Proceedings of the American Thoracic Society, 2006, Vol.3: 680-686, 10.1513/pats.200605-118SF
    Abstract | Full Text | PDF (138 KB)

    No Access

    Annals of the American Thoracic Society, 2014, Vol.11: 504-512, 10.1513/AnnalsATS.201308-277OC
    Abstract | Full Text | PDF (914 KB) | Supplemental Material

    Full Access
    American Journal of Respiratory and Critical Care Medicine, 2013, Vol.187: 189-196, 10.1164/rccm.201208-1364OC
    Abstract | Full Text | PDF (731 KB) | Supplemental Material


    TRATAMIENTO
    BRONCODILATADORES

    References

      • [1]
      • Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for the Diagnosis, Management and Prevention of COPD. Updated 2014. [accessed 21.07.2014] http://www.goldcopd.org/.
      • [4]
      • B.R. Celli, N.E. Thomas, J.A. Anderson, G.T. Ferguson, C.R. Jenkins, P.W. Jones,  et al.
      • Effect of pharmacotherapy on rate of decline of lung function in chronic obstructive pulmonary disease: results from the TORCH study
      • Am J Respir Crit Care Med, 178 (2008), pp. 332–338
      •  |   | 
      • [8]
      • J.F. Donohue, J.A. van Noord, E.D. Bateman, S.J. Langley, A. Lee, T.J. Witek Jr.,  et al.
      • A 6-month, placebo-controlled study comparing lung function and health status changes in COPD patients treated with tiotropium or salmeterol
      • Chest, 122 (2002), pp. 47–55
      •  |   | 
      • [15]
      • J. Lötvall
      • Pharmacological similarities and differences between beta2-agonists
      • Respir Med, 95 (Suppl. B) (2001), pp. S7–S11
      •  | 
      • [16]
      • C. Battram, S.J. Charlton, B. Cuenoud, M.R. Dowling, R.A. Fairhurst, D. Farr,  et al.
      • In vitro and in vivo pharmacological characterization of 5-[(R)-2-(5,6-diethyl-indan-2-ylamino)-1-hydroxy-ethyl]-8-hydroxy-1H-quinolin-2-one (indacaterol), a novel inhaled beta(2) adrenoceptor agonist with a 24-h duration of action
      • J Pharmacol Exp Ther, 317 (2006), pp. 762–770
      •  |   | 
      • [18]
      • R.J. Slack, V.J. Barrett, V.S. Morrison, R.G. Sturton, A.J. Emmons, A.J. Ford,  et al.
      • In vitro pharmacological characterization of vilanterol, a novel long-acting β2-adrenoceptor agonist with 24-hour duration of action
      • J Pharmacol Exp Ther, 344 (2013), pp. 218–230
      •  |   | 
      • [19]
      • T. Bouyssou, P. Casarosa, E. Naline, S. Pestel, I. Konetzki, P. Devillier,  et al.
      • Pharmacological characterization of olodaterol, a novel inhaled beta2-adrenoceptor agonist exerting a 24-hour-long duration of action in preclinical models
      • J Pharmacol Exp Ther, 334 (2010), pp. 53–62
      •  |   | 
      • [20]
      • H.J. van der Woude, T.H. Winter, R. Aalbers
      • Decreased bronchodilating effect of salbutamol in relieving methacholine induced moderate to severe bronchoconstriction during high dose treatment with long acting beta2 agonists
      • Thorax, 56 (2001), pp. 529–535
      •  |   | 
      • [21]
      • M. Johnson
      • Molecular mechanisms of beta(2)-adrenergic receptor function, response, and regulation
      • J Allergy Clin Immunol, 117 (2006), pp. 18–24
      • [22]
      • L.K. Chong, P.T. Peachell
      • Beta-adrenoceptor reserve in human lung: a comparison between airway smooth muscle and mast cells
      • Eur J Pharmacol, 378 (1999), pp. 115–122
      • [23]
      • K.J. Broadley
      • Review of mechanisms involved in the apparent differential desensitization of beta1- and beta2-adrenoceptor-mediated functional responses
      • J Auton Pharmacol, 19 (1999), pp. 335–345
      • [24]
      • G.P. Anderson
      • Current issues with beta2-adrenoceptor agonists: pharmacology and molecular and cellular mechanisms
      • Clin Rev Allergy Immunol, 31 (2006), pp. 119–130
      • [25]
      • S.A. Green, A.P. Spasoff, R.A. Coleman, M. Johnson, S.B. Liggett
      • Sustained activation of a G protein-coupled receptor via “anchored” agonist binding. Molecular localization of the salmeterol exosite within the beta2-adrenergic receptor
      • J Biol Chem, 271 (1996), pp. 24029–24035
      • [26]
      • G.P. Anderson
      • Formoterol: pharmacology, molecular basis of agonism, and mechanism of long duration of a highly potent and selective beta 2-adrenoceptor agonist bronchodilator
      • Life Sci, 52 (1993), pp. 2145–2160
      • [27]
      • D.A. Sykes, S.J. Charlton
      • Slow receptor dissociation is not a key factor in the duration of action of inhaled long-acting β2-adrenoceptor agonists
      • Br J Pharmacol, 165 (2012), pp. 2672–2683
      • [28]
      • D. Lombardi, B. Cuenoud, S.D. Krämer
      • Lipid membrane interactions of indacaterol and salmeterol: do they influence their pharmacological properties?
      • Eur J Pharm Sci, 38 (2009), pp. 533–547
      • [29]
      • P. Casarosa, I. Kollak, T. Kiechle, A. Ostermann, A. Schnapp, R. Kiesling,  et al.
      • Functional and biochemical rationales for the 24-hour-long duration of action of olodaterol
      • J Pharmacol Exp Ther, 337 (2011), pp. 600–609
      • [30]
      • M. Cazzola, C. Page, M.G. Matera
      • Long-acting muscarinic receptor antagonists for the treatment of respiratory disease
      • Pulm Pharmacol Ther, 26 (2013), pp. 307–317
      • [31]
      • M. Cazzola, M. Molimard
      • The scientific rationale for combining long-acting beta2-agonists and muscarinic antagonists in COPD
      • Pulm Pharmacol Ther, 23 (2010), pp. 257–267
      • [32]
      • C.A. Hirshman, B. Lande, T.L. Croxton
      • Role of M2 muscarinic receptors in airway smooth muscle contraction
      • Life Sci, 64 (1999), pp. 443–448
      • [33
      • K.E. Belmonte
      • Cholinergic pathways in the lungs and anticholinergic therapy for chronic obstructive pulmonary disease
      • Proc Am Thorac Soc, 2 (2005), pp. 297–304
      • [34]
      • H. Meurs, B.G. Dekkers, H. Maarsingh, A.J. Halayko, J. Zaagsma, R. Gosens
      • Muscarinic receptors on airway mesenchymal cells: novel findings for an ancient target
      • Pulm Pharmacol Ther, 26 (2013), pp. 145–155
      • [35]
      • D.A. Sykes, M.R. Dowling, J. Leighton-Davies, T.C. Kent, L. Fawcett, E. Renard,  et al.
      • The influence of receptor kinetics on the onset and duration of action and the therapeutic index of NVA237 and tiotropium
      • J Pharmacol Exp Ther, 343 (2012), pp. 520–528
      • [36]
      • G. Vauquelin, S.J. Charlton
      • Long-lasting target binding and rebinding as mechanisms to prolong in vivo drug action
      • Br J Pharmacol, 161 (2010), pp. 488–508
      • [37]
      • P. Casarosa, T. Bouyssou, S. Germeyer, A. Schnapp, F. Gantner, M. Pieper
      • Preclinical evaluation of long-acting muscarinic antagonists: comparison of tiotropium and investigational drugs
      • J Pharmacol Exp Ther, 330 (2009), pp. 660–668
      • [38]
      • M. Salmon, M.A. Luttmann, J.J. Foley, P.T. Buckley, D.B. Schmidt, M. Burman,  et al.
      • Pharmacological characterization of GSK573719 (umeclidinium): a novel, long-acting, inhaled antagonist of the muscarinic cholinergic receptors for treatment of pulmonary diseases
      • J Pharmacol Exp Ther, 345 (2013), pp. 260–270
      • [39]
      • M. Cazzola, L. Calzetta, A. Segreti, F. Facciolo, P. Rogliani, M.G. Matera
      • Translational study searching for synergy between glycopyrronium and indacaterol
      • COPD (2014 Sep 15) [Epub ahead of print]
      • [40]
      • M. Cazzola, L. Calzetta, C.P. Page, P. Rogliani, F. Facciolo, A. Gavaldà,  et al.
      • Pharmacological characterization of the interaction between aclidinium bromide and formoterol fumarate on human isolated bronchi
      • Eur J Pharmacol, 745 (2014 Dec 15), pp. 135–143 http://dx.doi.org/10.1016/j.ejphar.2014.10.025 Epub 2014 Oct 22. PubMed PMID: 25446566
      • [41]
      • H. Kume, S. Imbe, T. Iwanaga, O. Nishiyama, H. Sano, Y. Tohda
      • Involvement of the BK channels/G proteins processes in the synergistic effects between anticholinergic agents and beta2-adrenoceptor agonists in airway smooth muscle
      • Eur Respir J, 42 (Suppl. 57) (2013), p. 3032 [Abstract]
      • [42]
      • M. Cazzola, L. Calzetta, C.P. Page, M.G. Matera
      • Use of indacaterol for the treatment of COPD: a pharmacokinetic evaluation
      • Expert Opin Drug Metab Toxicol, 10 (2014), pp. 129–137
      • [43]
      • R. Sechaud, D. Renard, L. Zhang-Auberson, L. Motte Sde, A. Drollmann, G. Kaiser
      • Pharmacokinetics of multiple inhaled NVA237 doses in patients with chronic obstructive pulmonary disease (COPD)
      • Int J Clin Pharmacol Ther, 50 (2012), pp. 118–128
      • [44]
      • C. Verkindre, Y. Fukuchi, A. Flémale, A. Takeda, T. Overend, N. Prasad,  et al.
      • Sustained 24-h efficacy of NVA237, a once-daily long-acting muscarinic antagonist, in COPD patients
      • Respir Med, 104 (2010), pp. 1482–1489
      • [45]
      • C. Vogelmeier, C. Verkindre, D. Cheung, J.B. Galdiz, S.Z. Güçlü, S. Spangenthal,  et al.
      • Safety and tolerability of NVA237, a once-daily long-acting muscarinic antagonist, in COPD patients
      • Pulm Pharmacol Ther, 23 (2010), pp. 438–444
      • [46]
      • J.F. Donohue, A. Anzueto, J. Brooks, R. Mehta, C. Kalberg, G. Crater
      • A randomized, double-blind dose-ranging study of the novel LAMA GSK573719 in patients with COPD
      • Respir Med, 106 (7) (2012 Jul), pp. 970–979 http://dx.doi.org/10.1016/j.rmed.2012.03.012 Epub 2012 Apr 10. PubMed PMID: 22498110
      • [47]
      • F.P. Maesen, J.J. Smeets, T.J. Sledsens, F.D. Wald, P.J. Cornelissen
      • Tiotropium bromide, a new long-acting antimuscarinic bronchodilator: a pharmacodynamic study in patients with chronic obstructive pulmonary disease (COPD). Dutch Study Group
      • Eur Respir J, 8 (9) (1995 Sep), pp. 1506–1513 PubMed PMID: 8575576
      • [49]
      • D. Singh, P.W. Jones, E.D. Bateman, S. Korn, C. Serra, E. Molins,  et al.
      • Efficacy and safety of aclidinium bromide/formoterol fumarate fixed-dose combinations compared with individual components and placebo in patients with COPD (ACLIFORM-COPD): a multicentre, randomised study
      • BMC Pulm Med, 14 (2014 Nov 18), p. 178 http://dx.doi.org/10.1186/1471-2466-14-178 PubMed PMID: 25404569; PubMed Central PMCID: PMC4273456
      • [50]
      • J.F. Donohue
      • Minimal clinically important differences in COPD lung function
      • COPD, 2 (2005), pp. 111–124
      • [51]
      • Z.L. Borrill, C.M. Houghton, R. Tal-Singer, S.R. Vessey, I. Faiferman, S.J. Langley,  et al.
      • The use of plethysmography and oscillometry to compare long-acting bronchodilators in patients with COPD
      • Br J Clin Pharmacol, 65 (2008), pp. 244–252
      • [52]
      • D.E. O'Donnell, L. Forkert, K.A. Webb
      • Evaluation of bronchodilator responses in patients with “irreversible” emphysema
      • Eur Respir J, 18 (2001), pp. 914–920
      • [53]
      • P. Santus, D. Radovanovic, S. Henchi, F. Di Marco, S. Centanni, E. D'Angelo,  et al.
      • Assessment of acute bronchodilator effects from specific airway resistance changes in stable COPD patients
      • Respir Physiol Neurobiol, 197 (2014), pp. 36–45
      • [54]
      • E. Boni, L. Corda, D. Franchini, P. Chiroli, G.P. Damiani, L. Pini,  et al.
      • Volume effect and exertional dyspnoea after bronchodilator in patients with COPD with and without expiratory flow limitation at rest
      • Thorax, 57 (2002), pp. 528–532
      • [55]
      • C. Diba, G.G. King, N. Berend, C.M. Salome
      • Improved respiratory system conductance following bronchodilator predicts reduced exertional dyspnoea
      • Respir Med, 105 (2011), pp. 1345–1351
      • [56]
      • B. Balint, H. Watz, C. Amos, R. Owen, M. Higgins, B. Kramer,  et al.
      • Onset of action of indacaterol in patients with COPD: comparison with salbutamol and salmeterol-fluticasone
      • Int J Chron Obstruct Pulmon Dis, 5 (2010), pp. 311–318
      • [57]
      • R. Dahl, K.F. Chung, R. Buhl, H. Magnussen, V. Nonikov, D. Jack,  et al.
      • Efficacy of a new once-daily long-acting inhaled beta2-agonist indacaterol versus twice-daily formoterol in COPD
      • Thorax, 65 (2010), pp. 473–479
      • [58]
      • J. Beier, K.M. Beeh, K. Tröger, S. Stenglein, M. Bräutigam, R. Buhl,  et al.
      • Onset of action of formoterol in patients with moderate to severe, partially reversible airflow obstruction assessed by bodyplethysmography
      • Pneumologie, 56 (2002), pp. 535–541
      • [59]
      • M. Cazzola, P. Paggiaro, P. Palange, L. Bjermer, P. Ausin, L.G. Carlsson,  et al.
      • Onset of action of formoterol versus salmeterol via dry powder inhalers in moderate chronic obstructive pulmonary disease: a randomized, placebo-controlled, double-blind, crossover study
      • Clin Drug Investig, 32 (2012), pp. 147–155
      • [60]
      • J.F. Donohue, C. Fogarty, J. Lötvall, D.A. Mahler, H. Worth, A. Yorgancioglu,  et al.
      • Once-daily bronchodilators for chronic obstructive pulmonary disease: indacaterol versus tiotropium
      • Am J Respir Crit Care Med, 182 (2010), pp. 155–162
      • [61]
      • R. Kempsford, V. Norris, S. Siederer
      • Vilanterol trifenatate, a novel inhaled long-acting beta2 adrenoceptor agonist, is well tolerated in healthy subjects and demonstrates prolonged bronchodilation in subjects with asthma and COPD
      • Pulm Pharmacol Ther, 26 (2013), pp. 256–264
      • [62]
      • N.A. Hanania, G. Feldman, W. Zachgo, J.J. Shim, C. Crim, L. Sanford,  et al.
      • The efficacy and safety of the novel long-acting β2 agonist vilanterol in patients with COPD: a randomized placebo-controlled trial
      • Chest, 142 (2012), pp. 119–127
      • [63]
      • B. Celli, G. Crater, S. Kilbride, R. Mehta, M. Tabberer, C.J. Kalberg,  et al.
      • Once-daily umeclidinium/vilanterol 125/25 mcg in COPD: a randomized, controlled study
      • Chest (2014 Jan 2) [Epub ahead of print]
      • [64]
      • Donohue JF, Maleki-Yazdi MR, Kilbride S, Mehta R, Kalberg C, Church A. Efficacy and safety of once-daily umeclidinium/vilanterol 62.5/25 mcg in COPD. Respir Med;107:1538–1546.
      • [65]
      • G.T. Ferguson, G.J. Feldman, P. Hofbauer, A. Hamilton, L. Allen, L. Korducki,  et al.
      • Efficacy and safety of olodaterol once daily delivered via Respimat® in patients with GOLD 2-4 COPD: results from two replicate 48-week studies
      • Int J Chron Obstruct Pulmon Dis, 9 (2014), pp. 629–645
      • [66]
      • J. Beier, A.M. Kirsten, R. Mróz, R. Segarra, F. Chuecos, C. Caracta,  et al.
      • Efficacy and safety of aclidinium bromide compared with placebo and tiotropium in patients with moderate-to-severe chronic obstructive pulmonary disease: results from a 6-week, randomized, controlled phase IIIb study
      • COPD, 10 (2013), pp. 511–522
      • [67]
      • E. Kerwin, J. Hébert, N. Gallagher, C. Martin, T. Overend, V.K. Alagappan,  et al.
      • Efficacy and safety of NVA237 versus placebo and tiotropium in patients with COPD: the GLOW2 study
      • Eur Respir J, 40 (2012), pp. 1106–1114
      • [68]
      • K.M. Beeh, S. Korn, J. Beier, D. Jadayel, M. Henley, P. D'Andrea,  et al.
      • Effect of QVA149 on lung volumes and exercise tolerance in COPD patients: the BRIGHT study
      • Respir Med, 108 (2014), pp. 584–592
      • [69]
      • M. Cazzola, F. Di Marco, P. Santus, B. Boveri, M. Verga, M.G. Matera,  et al.
      • The pharmacodynamic effects of single inhaled doses of formoterol, tiotropium and their combination in patients with COPD
      • Pulm Pharmacol Ther, 17 (2004), pp. 35–39
      • [70]
      • R. Casaburi, D.A. Mahler, P.W. Jones, A. Wanner, P.G. San, R.L. ZuWallack,  et al.
      • A long-term evaluation of once-daily inhaled tiotropium in chronic obstructive pulmonary disease
      • Eur Respir J, 19 (2002), pp. 217–224
      • [71]
      • A. D'Urzo, G.T. Ferguson, J.A. van Noord, K. Hirata, C. Martin, R. Horton,  et al.
      • Efficacy and safety of once-daily NVA237 in patients with moderate-to-severe COPD: the GLOW1 trial
      • Respir Res, 12 (2011), p. 156
      • [72]
      • D.A. Mahler, M. Decramer, A. D'Urzo, H. Worth, T. White, V.K. Alagappan,  et al.
      • Dual bronchodilation with QVA149 reduces patient-reported dyspnoea in COPD: the BLAZE study
      • Eur Respir J, 43 (2014), pp. 1599–1609
      • [73]
      • J.F. Donohue, N.A. Hanania, K.A. Sciarappa, E. Goodwin, D.R. Grogan, R.A. Baumgartner,  et al.
      • Arformoterol and salmeterol in the treatment of chronic obstructive pulmonary disease: a one year evaluation of safety and tolerance
      • Ther Adv Respir Dis, 2 (2008), pp. 37–48
      • [74]
      • P.W. Jones, D. Singh, E.D. Bateman, A. Agusti, R. Lamarca, G. de Miquel,  et al.
      • Efficacy and safety of twice-daily aclidinium bromide in COPD patients: the ATTAIN study
      • Eur Respir J, 40 (2012), pp. 830–836
      • [75]
      • M.T. Dransfield, J. Bourbeau, P.W. Jones, N.A. Hanania, D.A. Mahler, J. Vestbo,  et al.
      • Once-daily inhaled fluticasone furoate and vilanterol versus vilanterol only for prevention of exacerbations of COPD: two replicate double-blind, parallel-group, randomised controlled trials
      • Lancet Respir Med, 1 (2013), pp. 210–223 Erratum in: Lancet Respir Med 2013;1:186
      • [76]
      • M. Decramer, A. Anzueto, E. Kerwin, T. Kaelin, N. Richard, G. Crater,  et al.
      • Efficacy and safety of umeclidinium plus vilanterol versus tiotropium, vilanterol, or umeclidinium monotherapies over 24 weeks in patients with chronic obstructive pulmonary disease: results from two multicentre, blinded, randomised controlled trials
      • Lancet Respir Med, 2 (2014), pp. 472–486
      • [77]
      • A. Koch, E. Pizzichini, A. Hamilton, L. Hart, L. Korducki, M.C. De Salvo,  et al.
      • Lung function efficacy and symptomatic benefit of olodaterol once daily delivered via Respimat® versus placebo and formoterol twice daily in patients with GOLD 2-4 COPD: results from two replicate 48-week studies
      • Int J Chron Obstruct Pulmon Dis, 9 (2014), pp. 697–714
      • [78]
      • R. Dahl, K.R. Chapman, M. Rudolf, R. Mehta, P. Kho, V.K. Alagappan,  et al.
      • Safety and efficacy of dual bronchodilation with QVA149 in COPD patients: the ENLIGHTEN study
      • Respir Med, 107 (2013), pp. 1558–1567
      • [79]
      • B.J. O'Connor, S.L. Aikman, P.J. Barnes
      • Tolerance to the nonbronchodilator effects of inhaled beta 2-agonists in asthma
      • N Engl J Med, 327 (1992), pp. 1204–1208
      • [80]
      • M. Cazzola, M.G. Matera
      • Tremor and β(2)-adrenergic agents: is it a real clinical problem?
      • Pulm Pharmacol Ther, 25 (2012), pp. 4–10
      • [81]
      • F. Di Marco, J. Milic-Emili, B. Boveri, P. Carlucci, P. Santus, F. Casanova,  et al.
      • Effect of inhaled bronchodilators on inspiratory capacity and dyspnoea at rest in COPD
      • Eur Respir J, 21 (2003), pp. 86–94
      • [82]
      • R. Kessler, M.R. Partridge, M. Miravitlles, M. Cazzola, C. Vogelmeier, D. Leynaud,  et al.
      • Symptom variability in patients with severe COPD: a pan-European cross-sectional study
      • Eur Respir J, 37 (2011), pp. 264–272
      • [83]
      • N. Roche, N.H. Chavannes, M. Miravitlles
      • COPD symptoms in the morning: impact, evaluation and management
      • Respir Res, 14 (2013), p. 112
      • [84]
      • M.R. Partridge, W. Schuermann, O. Beckman, T. Persson, T. Polanowski
      • Effect on lung function and morning activities of budesonide/formoterol versus salmeterol/fluticasone in patients with COPD
      • Ther Adv Respir Dis, 3 (2009), pp. 1–11
      • [85]
      • T. Welte, M. Miravitlles, P. Hernandez, G. Eriksson, S. Peterson, T. Polanowski,  et al.
      • Efficacy and tolerability of budesonide/formoterol added to tiotropium in patients with chronic obstructive pulmonary disease
      • Am J Respir Crit Care Med, 180 (2009), pp. 741–750
      • [86]
      • N. Roche, M. Small, S. Broomfield, V. Higgins, R. Pollard
      • Real world COPD: association of morning symptoms with clinical and patient reported outcomes
      • COPD, 10 (2013), pp. 679–686
      • [87]
      • M.A. Spruit, S.J. Singh, C. Garvey, R. ZuWallack, L. Nici, C. Rochester,  et al.
      • An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation
      • Am J Respir Crit Care Med, 188 (2013), pp. e13–64
      • [88]
      • F. Maltais, A. Hamilton, D. Marciniuk, P. Hernandez, F.C. Sciurba, K. Richter,  et al.
      • Improvements in symptom-limited exercise performance over 8 h with once-daily tiotropium in patients with COPD
      • Chest, 128 (2005), pp. 1168–1178
      • [89]
      • K.M. Beeh, D. Singh, L. Di Scala, A. Drollmann
      • Once-daily NVA237 improves exercise tolerance from the first dose in patients with COPD: the GLOW3 trial
      • Int J Chron Obstruct Pulmon Dis, 7 (2012), pp. 503–513
      • [90]
      • D.E. O'Donnell, R. Casaburi, W. Vincken, L. Puente-Maestu, J. Swales, D. Lawrence,  et al.
      • Effect of indacaterol on exercise endurance and lung hyperinflation in COPD
      • Respir Med, 105 (2011), pp. 1030–1036
      • [91]
      • S. Korn, E. Kerwin, S. Atis, C. Amos, R. Owen, C. Lassen,  et al.
      • Indacaterol once-daily provides superior efficacy to salmeterol twice-daily in COPD: a 12-week study
      • Respir Med, 105 (2011), pp. 719–726
      • [92]
      • C. Vogelmeier, P. Kardos, S. Harari, S.J. Gans, S. Stenglein, J. Thirlwell
      • Formoterol mono- and combination therapy with tiotropium in patients with COPD: a 6-month study
      • Respir Med, 102 (2008), pp. 1511–1520
      • [93]
      • C. Vogelmeier, B. Hederer, T. Glaab, H. Schmidt, M.P. Rutten-Van Mölken, K.M. Beeh,  et al.
      • Tiotropium versus salmeterol for the prevention of exacerbations of COPD
      • N Engl J Med, 364 (2011), pp. 1093–1103
      • [94]
      • R. Buhl, L.J. Dunn, C. Disdier, C. Lassen, C. Amos, M. Henley,  et al.
      • Blinded 12-week comparison of once-daily indacaterol and tiotropium in COPD
      • Eur Respir J, 38 (2011), pp. 797–803
      • [95]
      • M.L. Decramer, K.R. Chapman, R. Dahl, P. Frith, G. Devouassoux, C. Fritscher,  et al.
      • Once-daily indacaterol versus tiotropium for patients with severe chronic obstructive pulmonary disease (INVIGORATE): a randomised, blinded, parallel-group study
      • Lancet Respir Med, 1 (2013), pp. 524–533
      • [96]
      • K.R. Chapman, K.M. Beeh, J. Beier, E.D. Bateman, A. D'Urzo, R. Nutbrown,  et al.
      • A blinded evaluation of the efficacy and safety of glycopyrronium, a once-daily long-acting muscarinic antagonist, versus tiotropium, in patients with COPD: the GLOW5 study
      • BMC Pulm Med, 14 (2014), p. 4
      • [97]
      • J.A. Wedzicha, M. Decramer, J.H. Ficker, D.E. Niewoehner, T. Sandström, A.F. Taylor,  et al.
      • Analysis of chronic obstructive pulmonary disease exacerbations with the dual bronchodilator QVA149 compared with glycopyrronium and tiotropium (SPARK): a randomised, double-blind, parallel-group study
      • Lancet Respir Med, 1 (2013), pp. 199–209
      • [98]
      • E. Mehuys, K. Boussery, E. Adriaens, L. Van Bortel, L. De Bolle, I. Van Tongelen,  et al.
      • COPD management in primary care: an observational, community pharmacy-based study
      • Ann Pharmacother, 44 (2010), pp. 257–266
      • [99]
      • B.I. Neugaard, J.L. Priest, S.P. Burch, C.R. Cantrell, P.R. Foulis
      • Quality of care for veterans with chronic diseases: performance on quality indicators, medication use and adherence, and health care utilization
      • Popul Health Manag, 14 (2011), pp. 99–106
      • [100]
      • B.G. Bender
      • Nonadherence in chronic obstructive pulmonary disease patients: what do we know and what should we do next?
      • Curr Opin Pulm Med, 20 (2014), pp. 132–137
      • [101]
      • R.D. Restrepo, M.T. Alvarez, L.D. Wittnebel, H. Sorenson, R. Wettstein, D.L. Vines,  et al.
      • Medication adherence issues in patients treated for COPD
      • Int J Chron Obstruct Pulmon Dis, 3 (2008), pp. 371–384
      • [102]
      • J. Bourbeau, S.J. Bartlett
      • Patient adherence in COPD
      • Thorax, 63 (2008), pp. 831–838
      • [103]
      • J. Vestbo, J.A. Anderson, P.M. Calverley, B. Celli, G.T. Ferguson, C. Jenkins,  et al.
      • Adherence to inhaled therapy, mortality and hospital admission in COPD
      • Thorax, 64 (2009), pp. 939–943
      • [104]
      • J.F. van Boven, N.H. Chavannes, T. van der Molen, M.P. Rutten-van Mölken, M.J. Postma, S. Vegter
      • Clinical and economic impact of non-adherence in COPD: a systematic review
      • Respir Med, 108 (2014), pp. 103–113
      • [105]
      • A. Ismaila, D. Corriveau, J. Vaillancourt, D. Parsons, A. Dalal, Z. Su,  et al.
      • Impact of adherence to treatment with tiotropium and fluticasone propionate/salmeterol in COPD patients
      • Curr Med Res Opin, 30 (2014), pp. 1427–1436
      • [106]
      • M.J. Mäkelä, V. Backer, M. Hedegaard, K. Larsson
      • Adherence to inhaled therapies, health outcomes and costs in patients with asthma and COPD
      • Respir Med, 107 (2013), pp. 1481–1490
      • [107]
      • L. Simoni-Wastila, Y.J. Wei, J. Qian, I.H. Zuckerman, B. Stuart, T. Shaffer,  et al.
      • Association of chronic obstructive pulmonary disease maintenance medication adherence with all-cause hospitalization and spending in a medicare population
      • Am J Geriatr Pharmacother, 10 (2012), pp. 201–210
      • [108]
      • J.L. Viejo, P. Martín Escribano, S. Romero, J.R. Rodríguez Suárez, V. Sobradillo, A. Valencia
      • Compliance with inhalation treatment of patients with chronic obstructive pulmonary disease
      • Arch Bronconeumol, 36 (2000), pp. 319–325
      • [109]
      • P.M. van Grunsven, C.P. van Schayck, M. van Deuveren, C.L. van Herwaarden, R.P. Akkermans, C. van Weel
      • Compliance during long-term treatment with fluticasone propionate in subjects with early signs of asthma or chronic obstructive pulmonary disease (COPD): results of the Detection, Intervention, and Monitoring Program of COPD and Asthma (DIMCA) Study
      • J Asthma, 37 (2000), pp. 225–234
      • [110]
      • M. Takemura, K. Mitsui, M. Ido, M. Matsumoto, M. Koyama, D. Inoue,  et al.
      • Effect of a network system for providing proper inhalation technique by community pharmacists on clinical outcomes in COPD patients
      • Int J Chron Obstruct Pulmon Dis, 8 (2013), pp. 239–244
      • [111]
      • F. Gallefoss, P.S. Bakke
      • How does patient education and self-management among asthmatics and patients with chronic obstructive pulmonary disease affect medication?
      • Am J Respir Crit Care Med, 160 (1999), pp. 2000–2005
      • [112]
      • E.L. Toy, N.U. Beaulieu, J.M. McHale, T.R. Welland, C.A. Plauschinat, A. Swensen,  et al.
      • Treatment of COPD: relationships between daily dosing frequency, adherence, resource use, and costs
      • Respir Med, 105 (2011), pp. 435–441
      • [113]
      • G. Tamura, K. Ohta
      • Adherence to treatment by patients with asthma or COPD: comparison between inhaled drugs and transdermal patch
      • Respir Med, 101 (2007), pp. 1895–1902
      • [114]
      • A.P. Yu, A. Guérin, D. Ponce de Leon, K. Ramakrishnan, E.Q. Wu, M. Mocarski,  et al.
      • Therapy persistence and adherence in patients with chronic obstructive pulmonary disease: multiple versus single long-acting maintenance inhalers
      • J Med Econ, 14 (2011), pp. 486–496
      • [115]
      • D. Price, A. Robertson, K. Bullen, C. Rand, R. Home, H. Staudinger
      • Improved adherence with once-daily versus twice-daily dosing of mometasone furoate administered via a dry powder inhaler: a randomized open-label study
      • [116]
      • D. Price, A.J. Lee, E.J. Sims, L. Kemp, E.V. Hillyer, A. Chisholm,  et al.
      • Characteristics of patients preferring once-daily controller therapy for asthma and COPD: a retrospective cohort study
      • Prim Care Respir J, 22 (2013), pp. 161–168
      • [117]
      • J.A. Cramer, C. Bradley-Kennedy, A. Scalera
      • Treatment persistence and compliance with medications for chronic obstructive pulmonary disease
      • Can Respir J, 14 (2007), pp. 25–29
      • [118]
      • L. Laforest, F. Denis, E. Van Ganse, C. Ritleng, C. Saussier, N. Passante,  et al.
      • Correlates of adherence to respiratory drugs in COPD patients
      • Prim Care Respir J, 19 (2) (2010 Jun), pp. 148–154 http://dx.doi.org/10.4104/pcrj.2010.00004 PubMed PMID: 20094689
      • [119]
      • M. Cazzola, M.G. Matera
      • Bronchodilators: current and future
      • Clin Chest Med, 35 (2014), pp. 191–201
      • [120]
      • D. Price, A. Chisholm, E.V. Hillyer, A. Burden, J. von Ziegenweidt, H. Svedsater,  et al.
      • Effect of inhaled corticosteroid therapy step-down and dosing regimen on measures of asthma control
      • J Aller Ther, 4 (2013), p. 1
      • [121]
      • J. George, D.C. Kong, K. Stewart
      • Adherence to disease management programs in patients with COPD
      • Int J Chron Obstruct Pulmon Dis, 2 (2007), pp. 253–262


        Obesidad y patología Pulmonar

        1. World Health Organization, WHO, Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation (WHO Technical Report Series 894) at http://www.who.int/nutrition/publications/obesity/WHO_TRS_894/en/. Accessed 10 Feb 2016.
        2. Manna P, Jain SK. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Metab Syndr Relat Disord. 2015;13:423–44.PubMedView ArticleGoogle Scholar
        3. Brazilian Association for the Study of Obesity and Metabolic Syndrome, ABESO, Brazilian Obesity Guidelines 2009/2010 at http://www.abeso.org.br/pdf/diretrizes_brasileiras_obesidade_2009_2010_1.pdf. Accessed 22 Jan 2016.
        4. de Oliveira ML, Santos LM, da Silva EN. Direct healthcare cost of obesity in Brazil: an application of the cost-of-illness method from the perspective of the public health system in 2011. PLoS One. 2015;10:e0121160.PubMedPubMed CentralView ArticleGoogle Scholar
        5. Marseglia L, Manti S, D’Angelo G, Nicotera A, Parisi E, Di Rosa G, et al. Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci. 2014;16:378–400.PubMedPubMed CentralView ArticleGoogle Scholar
        6. Hodgson LE, Murphy PB, Hart N. Respiratory management of the obese patient undergoing surgery. J Thorac Dis. 2015;7:943–52.PubMedPubMed CentralGoogle Scholar
        7. Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath Jr CW. Body-mass index and mortality in a prospective cohort of U.S. adults. N Engl J Med. 1999;341:1097–105.PubMedView ArticleGoogle Scholar
        8. Redinger RN. The pathophysiology of obesity and its clinical manifestations. Gastroenterol Hepatol. 2007;3:856–63.Google Scholar
        9. Masmiquel L, Leiter LA, Vidal J, Bain S, Petrie J, Franek E, et al. LEADER 5: prevalence and cardiometabolic impact of obesity in cardiovascular high-risk patients with type 2 diabetes mellitus: baseline global data from the LEADER trial. Cardiovasc Diabetol. 2016;15:29.PubMedPubMed CentralView ArticleGoogle Scholar
        10. Benotti P, Wood GC, Argyropoulos G, Pack A, Keenan BT, Gao X, et al. The impact of obstructive sleep apnea on nonalcoholic fatty liver disease in patients with severe obesity. Obesity (Silver Spring). 2016;24:871–7.View ArticleGoogle Scholar
        11. Kairaitis K, Foster S, Amatoury J, Verma M, Wheatley JR, Amis TC. Pharyngeal mucosal wall folds in subjects with obstructive sleep apnea. J Appl Physiol. 2015;118(6):707–15.PubMedView ArticleGoogle Scholar
        12. Badran M, Yassin BA, Fox N, Laher I, Ayas N. Epidemiology of sleep disturbances and cardiovascular consequences. Can J Cardiol. 2015;31:873–9.PubMedView ArticleGoogle Scholar
        13. Guerra S, Wright AL, Morgan WJ, Sherrill DL, Holberg CJ, Martinez FD. Persistence of asthma symptoms during adolescence: role of obesity and age at the onset of puberty. Am J Respir Crit Care Med. 2004;170:78–85.PubMedView ArticleGoogle Scholar
        14. Lu Y, Van Bever HP, Lim TK, Kuan WS, Goh DY, Mahadevan M, et al. Obesity, asthma prevalence and IL-4: Roles of inflammatory cytokines, adiponectin and neuropeptide Y. Pediatr Allergy Immunol. 2015;26:530–6.PubMedView ArticleGoogle Scholar
        15. Ulrik CS. Asthma symptoms in obese adults: the challenge of achieving asthma control. Expert Rev Clin Pharmacol. 2016;9(1):5–8.PubMedView ArticleGoogle Scholar
        16. Cortés-Télles A, Torre-Bouscoulet L, Silva-Cerón M, Mejía-Alfaro R, Syed N, Zavorsky GS, et al. Combined effects of mild-to-moderate obesity and asthma on physiological and sensory responses to exercise. Respir Med. 2015;109:1397–403.PubMedView ArticleGoogle Scholar
        17. Vozoris NT1, O’Donnell DE. Prevalence, risk factors, activity limitation and health care utilization of an obese, population-based sample with chronic obstructive pulmonary disease. Can Respir J. 2012;19(3):e18–24.PubMedPubMed CentralView ArticleGoogle Scholar
        18. Hanson C, Rutten EP, Wouters EF, Rennard S. Influence of diet and obesity on COPD development and outcomes. Int J Chron Obstruct Pulmon Dis. 2014;9:723–33.PubMedPubMed CentralView ArticleGoogle Scholar
        19. Beltrán-Sánchez H, Harhay MO, Harhay MM, McElligott S. Prevalence and trends of metabolic syndrome in the adult U.S. population, 1999–2010. J Am Coll Cardiol. 2013;62:697–703.PubMedPubMed CentralView ArticleGoogle Scholar
        20. Baffi CW, Wood L, Winnica D, Strollo PJ, Gladwin MT, Que LG, et al. Metabolic syndrome and the lung. Chest. 2016. [Epub ahead of print].
        21. Samson SL, Garber AJ. Metabolic syndrome. Endocrinol Metab Clin North Am. 2014;43:1–23.PubMedView ArticleGoogle Scholar
        22. Lee H, Kim SR, Oh Y, Cho SH, Schleimer RP, Lee YC. Targeting insulin-like growth factor-I and insulin-like growth factor-binding protein-3 signaling pathways. A novel therapeutic approach for asthma. Am J Respir Cell Mol Biol. 2014;50:667–77.PubMedView ArticleGoogle Scholar
        23. Segula D. Complications of obesity in adults: a short review of the literature. Malawi Med J. 2014;26:20–4.PubMedPubMed CentralGoogle Scholar
        24. Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, Esquivel-Soto J, Morales-González A, Esquivel-Chirino C, et al. Inflammation, oxidative stress, and obesity. Int J Mol Sci. 2011;12:3117–32.PubMedPubMed CentralView ArticleGoogle Scholar
        25. Fonseca-Alaniz MH, Takada J, Alonso-Vale MI, Lima FB. Adipose tissue as an endocrine: organ: from theory to practice. J Pediatr. 2007;83 Suppl 5:192–203.View ArticleGoogle Scholar
        26. Möller K, Ostermann AI, Rund K, Thoms S, Blume C, Stahl F, et al. Influence of weight reduction on blood levels of C-reactive protein, tumor necrosis factor-α, interleukin-6, and oxylipins in obese subjects. Prostaglandins Leukot Essent Fatty Acids. 2016;106:39–49.PubMedView ArticleGoogle Scholar
        27. Stienstra R, Tack CJ, Kanneganti TD, Joosten LA, Netea MG. The inflammasome puts obesity in the danger zone. Cell Metabol. 2012;15:10–8.View ArticleGoogle Scholar
        28. Naugler WE, Karin M. The wolf in sheep’s clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol Med. 2008;14:109–19.PubMedView ArticleGoogle Scholar
        29. Pedersen JM, Budtz-Jørgensen E, Mortensen EL, Bruunsgaard H, Osler M, Sørensen TI, et al. Late midlife C-reactive protein and interleukin-6 in middle aged danish men in relation to body size history within and across generations. Obesity. 2016;24:461–8.PubMedView ArticleGoogle Scholar
        30. Stenlöf K, Wernstedt I, Fjällman T, Wallenius V, Wallenius K, Jansson JO. Interleukin-6 levels in the central nervous system are negatively correlated with fat mass in overweight/obese subjects. J Clin Endocrinol Metab. 2003;88:4379–83.PubMedView ArticleGoogle Scholar
        31. Drougard A, Fournel A, Valet P, Knauf C. Impact of hypothalamic reactive oxygen species in the regulation of energy metabolism and food intake. Front Neurosci. 2015;9:56.PubMedPubMed CentralView ArticleGoogle Scholar
        32. Amirkhizi F, Siassi F, Minaie S, Djalali M, Rahimi A, Chamari M. Is obesity associated with increased plasma lipid peroxidation and oxidative stress in women. ARYA Atheroscler. 2007;2:189–92.Google Scholar
        33. Ozata M, Mergen M, Oktenli C, Aydin A, Sanisoglu SY, Bolu E, et al. Increased oxidative stress and hypozincemia in male obesity. Clin Biochem. 2002;35:627–31.PubMedView ArticleGoogle Scholar
        34. Goossens GH. The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol Behav. 2008;94:206–18.PubMedView ArticleGoogle Scholar
        35. Dhar-Mascareno M, Ramirez SN, Rozenberg I, Rouille Y, Kral JG, Mascareno EJ. Hexim1, a novel regulator of leptin function, modulates obesity and glucose disposal. Mol Endocrinol. 2016;30:314–24.PubMedPubMed CentralView ArticleGoogle Scholar
        36. Hukshorn CJ, Lindeman JH, Toet KH, Saris WH, Eilers PH, Westerterp-Plantenga MS, et al. Leptin and the proinflammatory state associated with human obesity. J Clin Endocrinol Metab. 2004;89:1773–8.PubMedView ArticleGoogle Scholar
        37. Deng Y, Scherer PE. Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann N Y Acad Sci. 2010;1212:E1–19.PubMedPubMed CentralView ArticleGoogle Scholar
        38. Ouedraogo R, Gong Y, Berzins B, Wu X, Mahadev K, Hough K, et al. Adiponectin deficiency increases leukocyte-endothelium interactions via upregulation of endothelial cell adhesion molecules in vivo. J Clin Invest. 2007;117:1718–26.PubMedPubMed CentralView ArticleGoogle Scholar
        39. Fujita K, Nishizawa H, Funahashi T, Shimomura I, Shimabukuro M. Systemic oxidative stress is associated with visceral fat accumulation and the metabolic syndrome. Circ J. 2006;70:1437–42.PubMedView ArticleGoogle Scholar
        40. Chen Y, Pitzer AL, Li X, Li PL, Wang L, Zhang Y. Instigation of endothelial Nlrp3 inflammasome by adipokine visfatin promotes inter-endothelial junction disruption: role of HMGB1. J Cell Mol Med. 2015;19:2715–27.PubMedPubMed CentralView ArticleGoogle Scholar
        41. Moschen AR, Kaser A, Enrich B, Mosheimer B, Theurl M, Niederegger H, et al. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J Immunol. 2007;178:1748–58.PubMedView ArticleGoogle Scholar
        42. Kawanami D, Maemura K, Takeda N, Harada T, Nojiri T, Imai Y, et al. Direct reciprocal effects of resistin and adiponectin on vascular endothelial cells: a new insight into adipocytokine-endothelial cell interactions. Biochem Biophys Res Commun. 2004;314:415–9.PubMedView ArticleGoogle Scholar
        43. Pihl E, Zilmer K, Kullisaar T, Kairane C, Mägi A, Zilmer M. Atherogenic inflammatory and oxidative stress markers in relation to overweight values in male former athletes. Int J Obes. 2006;30:141–6.View ArticleGoogle Scholar
        44. Okla M, Kang I, da Kim M, Gourineni V, Shay N, Gu L, et al. Ellagic acid modulates lipid accumulation in primary human adipocytes and human hepatoma Huh7 cells via discrete mechanisms. J Nutr Biochem. 2015;26:82–90.PubMedView ArticleGoogle Scholar
        45. Brazzale DJ, Pretto JJ, Schachter LM. Optimizing respiratory function assessments to elucidate the impact of obesity on respiratory health. Respirology. 2015;20:715–21.PubMedView ArticleGoogle Scholar
        46. Steier J, Lunt A, Hart N, Polkey MI, Moxham J. Observational study of the effect of obesity on lung volumes. Thorax. 2014;69:752–9.PubMedView ArticleGoogle Scholar
        47. Koo P, Gartman EJ, Sethi JM, McCool FD. Physiology in Medicine: physiological basis of diaphragmatic dysfunction with abdominal hernias-implications for therapy. Appl Physiol. 2015;118:142–7.View ArticleGoogle Scholar
        48. Unterborn J. Pulmonary function testing in obesity, pregnancy, and extremes of body habitus. Clin Chest Med. 2001;22:759–67.PubMedView ArticleGoogle Scholar
        49. Salome CM, King GG, Berend N. Physiology of obesity and effects on lung function. J Appl Physiol. 2010;108:206–11.PubMedView ArticleGoogle Scholar
        50. de Lucas RP, Rodríguez González-Moro JM, Rubio SY. Obesity and lung function. Arch Bronconeumol. 2004;40 Suppl 5:27–31.Google Scholar
        51. Rasslan Z, Stirbulov R, Lima CA, Saad JR. Lung function and obesity. Rev Bras Clínica Médica. 2009;7:36–9.Google Scholar
        52. Jones RL, Nzekwu MM. The effects of body mass index on lung volumes. Chest. 2006;130:827–33.PubMedView ArticleGoogle Scholar
        53. Mafort TT, Madeira E, Madeira M, Guedes EP, Moreira RO, de Mendonça LM, et al. Intragastric balloon for the treatment of obesity: evaluation of pulmonary function over a 3-month period. Lung. 2012;190:671–6.PubMedView ArticleGoogle Scholar
        54. Melo LC, Silva MA, Calles ACN. Obesity and lung function: a systematic review. Einstein. 2014;12:120–5.PubMedView ArticleGoogle Scholar
        55. Carpio C, Santiago A, de García Lorenzo A, Alvarez-Sala R. Changes in lung function testing associated with obesity. Nutr Hosp. 2014;30:1054–62.PubMedGoogle Scholar
        56. Thyagarajan B, Jacobs Jr DR, Apostol GG, Smith LJ, Jensen RL, Crapo RO, et al. Longitudinal association of body mass index with lung function: the CARDIA study. Respir Res. 2008;9:31.PubMedPubMed CentralView ArticleGoogle Scholar
        57. Pellegrino R, Gobbi A, Antonelli A, Torchio R, Gulotta C, Pellegrino GM, et al. Ventilation heterogeneity in obesity. J Appl Physiol. 2014;116:1175–81.PubMedView ArticleGoogle Scholar
        58. Mahadev S, Salome CM, Berend N, King GG. The effect of low lung volume on airway function in obesity. Respir Physiol Neurobiol. 2013;188:192–9.PubMedView ArticleGoogle Scholar
        59. Manuel AR, Hart N, Stradling JR. Correlates of obesity-related chronic ventilatory failure. BMJ Open Respir Res. 2016;3(1):e000110.PubMedPubMed CentralView ArticleGoogle Scholar
        60. Chlif M, Keochkerian D, Choquet D, Vaidie A, Ahmaidi S. Effects of obesity on breathing pattern, ventilatory neural drive and mechanics. Respir Physiol Neurobiol. 2009;168:198–202.PubMedView ArticleGoogle Scholar
        61. Arena R, Cahalin LP. Evaluation of cardiorespiratory fitness and respiratory muscle function in the obese population. Prog Cardiovasc Dis. 2014;56:457–64.PubMedView ArticleGoogle Scholar
        62. Rivas E, Arismendi E, Agustí A, Sanchez M, Delgado S, Gistau C, et al. Ventilation/perfusion distribution abnormalities in morbidly obese subjects before and after bariatric surgery. Chest. 2015;147:1127–34.PubMedView ArticleGoogle Scholar
        63. Saydain G, Beck KC, Decker PA, Cowl CT, Scanlon PD. Clinical significance of elevated diffusion capacity. Chest. 2004;125:446–52.PubMedView ArticleGoogle Scholar
        64. Mafort TT, Madeira E, Madeira M, Guedes EP, Moreira RO, de Mendonça LM, et al. Six-month intragastric balloon treatment for obesity improves lung function, body composition, and metabolic syndrome. Obes Surg. 2014;24:232–40.PubMedView ArticleGoogle Scholar
        65. Dixon AE, Subramanian M, DeSarno M, Black K, Lane L, Holguin F. A pilot randomized controlled trial of pioglitazone for the treatment of poorly controlled asthma in obesity. Respir Res. 2015;16:143.PubMedPubMed CentralView ArticleGoogle Scholar
        66. Pakhale S, Baron J, Dent R, Vandemheen K, Aaron SD. Effects of weight loss on airway responsiveness in obese adults with asthma: does weight loss lead to reversibility of asthma? Chest. 2015;147:1582–90.PubMedView ArticleGoogle Scholar
        67. Boulet LP, Turcotte H, Martin J, Poirier P. Effect of bariatric surgery on airway response and lung function in obese subjects with asthma. Respir Med. 2012;106:651–60.PubMedView ArticleGoogle Scholar
        68. Torchio R, Gobbi A, Gulotta C, Dellacà R, Tinivella M, Hyatt RE, et al. Mechanical effects of obesity on airway responsiveness in otherwise healthy humans. J Appl Physiol. 2009;107:408–16.PubMedView ArticleGoogle Scholar
        69. Brumpton BM, Leivseth L, Romundstad PR, Langhammer A, Chen Y, Camargo Jr CA, et al. The joint association of anxiety, depression and obesity with incident asthma in adults: the HUNT study. Int J Epidemiol. 2013;42:1455–63.PubMedView ArticleGoogle Scholar
        70. Hjellvik V, Tverdal A, Furu K. Body mass index as predictor for asthma: a cohort study of 118,723 males and females. Eur Respir J. 2010;35:1235–42.PubMedView ArticleGoogle Scholar
        71. Groth SW, Rhee H, Kitzman H. Relationships among obesity, physical activity and sedentary behavior in young adolescents with and without lifetime asthma. J Asthma. 2016;53:19–24.PubMedView ArticleGoogle Scholar
        72. Yawn BP, Rank MA, Bertram SL, Wollan PC. Obesity, low levels of physical activity and smoking present opportunities for primary care asthma interventions: an analysis of baseline data from The Asthma Tools Study. NPJ Prim Care Respir Med. 2015;25:15058.PubMedPubMed CentralView ArticleGoogle Scholar
        73. Schatz M, Zeiger RS, Yang SJ, Chen W, Sajjan S, Allen-Ramey F, et al. Prospective study on the relationship of obesity to asthma impairment and risk. J Allergy Clin Immunol Pract. 2015;3:560–5.PubMedView ArticleGoogle Scholar
        74. de Lima Azambuja R, da Costa Santos Azambuja LS, Costa C, Rufino R. Adiponectin in asthma and obesity: protective agent or risk factor for more severe disease? Lung. 2015;193:749–55.PubMedView ArticleGoogle Scholar
        75. Ballantyne D, Scott H, MacDonald-Wicks L, Gibson PG, Wood L. Resistin is a predictor of asthma risk and resistin: adiponectin ratio is a negative predictor of lung function in asthma. Clin Exp Allergy. 2016. [Epub ahead of print].
        76. Heinzmann-Filho JP, Vendrusculo FM, Woszezenki CT, Piva TC, Santos AN, Barcellos AB, et al. Inspiratory muscle function in asthmatic and healthy subjects: influence of age, nutrition and physical activity. J Asthma. 2016. [Epub ahead of print].
        77. Charron CB, Pakhalé S. The role of airway hyperresponsiveness measured by methacholine challenge test in defining asthma severity in asthma-obesity syndrome. Curr Opin Allergy Clin Immunol. 2016. [Epub ahead of print].
        78. Bates JH. Physiological mechanisms of airways hyperresponsiveness in obese asthma. Am J Respir Cell Mol Biol. 2016. [Epub ahead of print].
        79. Cheung AS, de Rooy C, Hoermann R, Gianatti EJ, Hamilton EJ, Roff G, et al. Correlation of visceral adipose tissue measured by Lunar Prodigy dual x-ray absorptiometry with MRI and CT in older men. Int J Obes. 2016. [Epub ahead of print].
        80. Rondanelli M, Klersy C, Perna S, Faliva MA, Montorfano G, Roderi P, et al. Effects of two-months balanced diet in metabolically healthy obesity: lipid correlations with gender and BMI-related differences. Lipids Health Dis. 2015;14:139.PubMedPubMed CentralView ArticleGoogle Scholar
        81. Tarnoki AD, Tarnoki DL, Medda E, Cotichini R, Stazi MA, Fagnani C, et al. Bioimpedance analysis of body composition in an international twin cohort. Obes Res Clin Pract. 2014;8:e201–98.PubMedView ArticleGoogle Scholar
        82. Mulasi U, Kuchnia AJ, Cole AJ, Earthman CP. Bioimpedance at the bedside: current applications, limitations, and opportunities. Nutr Clin Pract. 2015;30:180–93.PubMedView ArticleGoogle Scholar
        83. Wang H, Chen YE, Eitzman DT. Imaging body fat: techniques and cardiometabolic implications. Arterioscler Thromb Vasc Biol. 2014;34:2217–23.PubMedPubMed CentralView ArticleGoogle Scholar
        84. Steele RM, Finucane FM, Griffin SJ, Wareham NJ, Ekelund U. Obesity is associated with altered lung function independently of physical activity and fitness. Obesity. 2009;17:578–84.PubMedView ArticleGoogle Scholar
        85. Enzi G, Gasparo M, Biondetti PR, Fiore D, Semisa M, Zurlo F. Subcutaneous and visceral fat distribution according to sex, age, and overweight, evaluated by computer tomography. Am J Clin Nutr. 1986;44:739–46.PubMedGoogle Scholar
        86. Bernhardt V, Wood HE, Moran RB, Babb TG. Dyspnea on exertion in obese men. Respir Physiol Neurobiol. 2013;185:241–8.PubMedPubMed CentralView ArticleGoogle Scholar
        87. Bernhardt V, Stickford JL, Bhammar DM, Babb TG. Aerobic exercise training without weight loss reduces dyspnea on exertion in obese women. Respir Physiol Neurobiol. 2016;221:64–70.PubMedView ArticleGoogle Scholar
        88. Salvadego D, Sartorio A, Agosti F, Tringali G, Patrizi A, Mauro AL, et al. Acute respiratory muscle unloading by normoxic helium-O2 breathing reduces the O2 cost of cycling and perceived exertion in obese adolescents. Eur J Appl Physiol. 2015;115:99–109.PubMedView ArticleGoogle Scholar
        89. Gibson N, Johnston K, Bear N, Stick S, Logie K, Hall GL. Expiratory flow limitation and breathing strategies in overweight adolescents during submaximal exercise. Int J Obes. 2014;38:22–6.View ArticleGoogle Scholar
        90. Hothi SS, Tan DK, Partridge G, Tan LB. Is low VO2max/kg in obese heart failure patients indicative of cardiac dysfunction? Int J Cardiol. 2015;184:755–62.PubMedView ArticleGoogle Scholar
        91. Carpio C, Villasante C, Galera R, Romero D, de Cos A, Hernanz A, et al. Systemic inflammation and higher perception of dyspnea mimicking asthma in obese subjects. J Allergy Clin Immunol. 2016;137:718–26.PubMedView ArticleGoogle Scholar
        92. Duarte RL, Magalhães-da-Silveira FJ. Factors predictive of obstructive sleep apnea in patients undergoing pre-operative evaluation for bariatric surgery and referred to a sleep laboratory for polysomnography. J Bras Pneumol. 2015;41:440–8.PubMedPubMed CentralView ArticleGoogle Scholar
        93. Pinto JA, Ribeiro DK, Cavallini AF, Duarte C, Freitas GS. Comorbidities associated with obstructive sleep apnea: a retrospective study. Int Arch Otorhinolaryngol. 2016;20:145–50.PubMedPubMed CentralView ArticleGoogle Scholar
        94. Aurora RN, Punjabi NM. Obstructive sleep apnoea and type 2 diabetes mellitus: a bidirectional association. Lancet Respir Med. 2013;1:329–38.PubMedView ArticleGoogle Scholar
        95. Peromaa-Haavisto P, Tuomilehto H, Kössi J, Virtanen J, Luostarinen M, Pihlajamäki J, et al. Prevalence of obstructive sleep apnoea among patients admitted for bariatric surgery: a prospective multicentre trial. Obes Surg. 2015. [Epub ahead of print].
        96. Ren SL, Li YR, Jen R, Wu JX1, Ye JY. Effects of altered intra-abdominal pressure on the upper airway collapsibility in a porcine model. Chin Med J. 2015;128:3204–10.PubMedPubMed CentralView ArticleGoogle Scholar
        97. Pierce AM, Brown LK. Obesity hypoventilation syndrome: current theories of pathogenesis. Curr Opin Pulm Med. 2015;21:557–62.PubMedView ArticleGoogle Scholar
        98. Gil JS, Drager LF, Guerra-Riccio GM, Mostarda C, Irigoyen MC, Costa-Hong V, et al. The impact of metabolic syndrome on metabolic, pro-inflammatory and prothrombotic markers according to the presence of high blood pressure criterion. Clinics (Sao Paulo). 2013;68:1495–501.View ArticleGoogle Scholar
        99. Bozkurt NC, Beysel S, Karbek B, Unsal İO, Cakir E, Delibasi T. Visceral obesity mediates the association between metabolic syndrome and obstructive sleep apnea syndrome. Metab Syndr Relat Disord. 2016;14:217–21.PubMedView ArticleGoogle Scholar
        100. Chau EH, Lam D, Wong J, Mokhlesi B, Chung F. Obesity hypoventilation syndrome: a review of epidemiology, pathophysiology, and perioperative considerations. Anesthesiology. 2012;117:188–205.PubMedView ArticleGoogle Scholar
        101. BaHammam AS. Prevalence, clinical characteristics, and predictors of obesity hypoventilation syndrome in a large sample of Saudi patients with obstructive sleep apnea. Saudi Med J. 2015;36:181–9.PubMedPubMed CentralView ArticleGoogle Scholar
        102. Shetty S, Parthasarathy S. Obesity hypoventilation syndrome. Curr Pulmonol Rep. 2015;4:42–55.PubMedPubMed CentralView ArticleGoogle Scholar
        103. BaHammam AS, Pandi-Perumal SR, Piper A, Bahammam SA, Almeneessier AS, Olaish AH, et al. Gender differences in patients with obesity hypoventilation syndrome. J Sleep Res. 2016. [Epub ahead of print].
        104. Jehan S, Masters-Isarilov A, Salifu I, Zizi F, Jean-Louis G, Pandi-Perumal SR, et al. Sleep disorders in postmenopausal women. J Sleep Disord Ther. 2015;4:1000212.PubMedPubMed CentralGoogle Scholar
        105. Thomas PS, Cowen ER, Hulands G, Milledge JS. Respiratory function in the morbidly obese before and after weight loss. Thorax. 1989;44:382–6.PubMedPubMed CentralView ArticleGoogle Scholar
        106. Littleton SW. Impact of obesity on respiratory function. Respirology. 2012;17:43–9.PubMedView ArticleGoogle Scholar
        107. Hakala K, Mustajoki P, Aittomäki J, Sovijärvi AR. Effect of weight loss and body position on pulmonary function and gas exchange abnormalities in morbid obesity. Int J Obes Relat Metab Disord. 1995;19:343–6.PubMedGoogle Scholar
        108. Babb TG, Wyrick BL, Chase PJ, Delorey DS, Rodder SG, Feng MY, et al. Weight loss via diet and exercise improves exercise breathing mechanics in obese men. Chest. 2011;140:454–60.PubMedView ArticleGoogle Scholar
        109. Weiner P, Waizman J, Weiner M, Rabner M, Magadle R, Zamir D. Influence of excessive weight loss after gastroplasty for morbid obesity on respiratory muscle performance. Thorax. 1998;53:39–42.PubMedPubMed CentralView ArticleGoogle Scholar
        110. Bernhardt V, Babb TG. Weight loss reduces dyspnea on exertion in obese women. Respir Physiol Neurobiol. 2014;204:86–92.PubMedView ArticleGoogle Scholar
        111. Ulrik CS. Asthma and obesity: is weight reduction the key to achieve asthma control? Curr Opin Pulm Med. 2016;22:69–73.PubMedView ArticleGoogle Scholar
        112. Al-Alwan A, Bates JH, Chapman DG, Kaminsky DA, DeSarno MJ, Irvin CG, et al. The nonallergic asthma of obesity. A matter of distal lung compliance. Am J Respir Crit Care Med. 2014;189:1494–502.PubMedPubMed CentralView ArticleGoogle Scholar
        113. Hewitt S, Humerfelt S, Søvik TT, Aasheim ET, Risstad H, Kristinsson J, et al. Long-term improvements in pulmonary function 5 years after bariatric surgery. Obes Surg. 2014;24:705–11.PubMedView ArticleGoogle Scholar
        114. Dias-Júnior SA, Reis M, de Carvalho-Pinto RM, Stelmach R, Halpern A, Cukier A. Effects of weight loss on asthma control in obese patients with severe asthma. Eur Respir J. 2014;43:1368–77.PubMedView ArticleGoogle Scholar
        115. van Huisstede A, Rudolphus A, Castro Cabezas M, Biter LU, van de Geijn GJ, Taube C, Hiemstra PS, et al. Effect of bariatric surgery on asthma control, lung function and bronchial and systemic inflammation in morbidly obese subjects with asthma. Thorax. 2015;70:659–67.PubMedView ArticleGoogle Scholar

No hay comentarios: